EN
www.shuhuajp.cn

6996电视影片免费人数2024年最新版下载当AI性能狂飙,类脑之路却南辕北辙?科学家交叉研究带来认知颠覆

深度神经网络(DNN,Deep Neural Network)作为 AI 领域的重要突破,在视觉感知任务中展现出卓越的性能表现,其识别准确率等关键指标甚至已在特定场景下超越人类水平。这使人们普遍认为,人工智能技术的快速发展将促进对生物智能的深入理解。 然而,由美国布朗大学和美国哥伦比亚大学联合团队最近开展的一项研究却提出了不同的观点:随着 AI 模型在物体识别任务上的表现越来越强,其在神经表征(如下颞叶皮层活动模式)和行为反应(如注意力分配策略)两个关键维度上,与灵长类动物视觉系统的差异反而越来越大。 这提示人们,高性能的 AI 模型并不等于类脑模型,也就是说,模型如果只是为了提升任务准确率,未必会更接近大脑的运算机制。这对神经科学、认知科学与 AI 交叉研究敲响警钟:不能再假设“AI 表现越好,就越接近人脑”。这一发现挑战了人们长期以来的假设,即 AI 的进步将自然而然地推动脑与认知科学的发展。 该论文第二作者、哥伦比亚大学在读博士生冯品源对 DeepTech 表示:“未来的 AI 研究需要明确目标——是构建功能性工具,还是理解大脑机制。如果是后者,我们需要反过来用脑与认知科学的发现来约束模型的设计,而不是仅依赖工程优化。 日前,相关论文以《更强大的人工智能并不意味着更好的生物模型》(Better artificial intelligence does not mean better models of biology)为题发表在预印本网站arXiv[1]。布朗大学德鲁·林斯利(Drew Linsley)研究助理教授是第一作者,冯品源是第二作者,布朗大学托马斯·瑟尔(Thomas Serre)教授担任通讯作者。 从历史维度来看,人工智能的发展起源于对人脑机制的探索,这一渊源在专业术语中仍有体现——诸如“神经网络”“表征”等核心概念都直接借鉴自神经科学与心理学等领域。典型如诺贝尔物理学奖得主杰弗里·辛顿(Geoffrey Hinton)的学术轨迹,其早期认知心理学研究对人脑的探索为后续 AI 突破奠定了理论基础。 然而,随着计算硬件的迭代升级和技术范式的革新,AI 发展的主导力量已从神经科学、心理学转向计算机科学,这一转变带来了研究范式的根本性重构。过去人们相信,通过优化任务表现(比如 ImageNet 分类 [2]),模型就能自发学到类似人脑的表征,但是从 AI 目前的发展来看,这套逻辑正在失效。 在这一研究背景下,团队提出了“和谐化”方法,尝试在模型优化中引入人类视觉的注意机制。通过调整训练数据和目标函数,使模型决策时更关注与人类视觉系统一致的关键区域,初步验证了提升模型生物合理性的可行性。 然而,该方法仍面临核心挑战:高质量人类行为数据的匮乏使得优化过程本质上仍未完全脱离监督学习的框架。尽管如此,这一研究方向具有双重价值——既增强了模型可解释性,又为理解人类视觉机制提供了新视角。 基于这些发现,该研究强调视觉科学需要建立独立于工程 AI 的方法论体系,同时选择性吸收神经科学的启示来优化 DNN 的能效、泛化和鲁棒性。 重点突破方向包括:时间编码机制、动态稀疏连接(模拟神经节能)、反馈/横向结构(实现类皮层的注意调控)、突触可塑性(支持持续学习)以及多模态整合(借鉴海马记忆机制)。这些探索需要在生物合理性与计算效率间寻求平衡,优先实现工程可行的关键特性,而非完全模拟生物细节。 研究指出,当前工程优化的 AI 模型存在系统性偏差,视觉科学研究需审慎使用。未来的突破有赖于生物数据与大规模训练的深度结合,这需要神经科学、认知科学和 AI 领域在实验平台、训练流程和评估标准上建立协同机制。 需要了解的是,大脑不是为静态单一模态任务进化的,而是在一个不断变化、充满多感官输入的世界中发展出来的。因此,传统监督学习的原理和大脑的学习机制之间存在本质差异。正是这一认知推动了自监督学习的兴起,该方法通过从原始数据中自主发掘潜在规律,有效减少了对人工标注的依赖,展现出更强的生物合理性。 另外,如果希望模型学到类似生物的视觉策略,训练环境也应该是多模态、动态、交互式的。例如,可以设计一个虚拟环境,模型需要不断与环境互动、预测未来、聚焦目标以及躲避风险。 冯品源解释说道:“这样的环境将促使模型发展出更强的注意机制、时序整合机制和多模态融合能力。随着具身智能概念的火爆,越来越多的人也关注这一方向——从让 AI 静态感知到真实世界的物体进行交互,从中获得有用的多维度信息。” 目前,冯品源在哥伦比亚大学祖克曼研究所(Zuckerman Institute)下属的“视觉推理”实验室(Visual Inference Lab)研究人与 AI 的视觉机制,他的导师是尼古拉斯·克里格斯科特(Nikolaus Kriegeskorte)教授。 他正在努力将认知科学和神经科学的见解推动 AI 发展,同时利用 AI 促进对人类智能的理解。在加入哥伦比亚大学之前,他在布朗大学获得硕士学位,师从托马斯·瑟尔(Thomas Serre)教授,主要研究人类与机器在表征对齐方面的关系。 托马斯·瑟尔团队的前期研究为这一领域奠定了重要基础。在视觉行为层面,他们开发的新型对齐机制首次实现了 AI 在复杂场景中与人类认知策略的高度一致;在神经表征层面,他们发现工程优化的 AI 模型与生物视觉的神经活动模式存在系统性偏离。这些发现为构建新一代神经可解释的感知模型提供了理论框架和方法学指导。 未来,该团队将聚焦两个方向继续研究:围绕 AI 模型展开深度探索,从动态数据(如视频)中学习,使模型的视觉能力更靠近人类;继续构建横跨认知科学、神经科学与计算机科学领域的大规模数据平台,推动跨学科研究标准的建立与互认。这些方向有助于为 AI 与生物智能研究提供更丰富的视角。

6996电视影片免费人数2024年最新版下载
6996电视影片免费人数2024年最新版下载齐沃即将出任国米新主帅,而冈茨对此表示:“这是勇敢的选择,因为齐沃在国米青训执教时取得了出色的成绩,还成功率领帕尔马保级。我认为这个选择是勇敢的,但对于马洛塔和那些选择齐沃的人来说,这肯定是正确的选择。”至于塔雷米,国米新闻网称由于这位伊朗国脚难以前往沙特或美职联效力,因此国米方面正在土耳其为其找寻可能的买家。6996电视影片免费人数2024年最新版下载17c路透社日前援引消息报道称,随着出台出口管制政策,中国已对稀土磁铁行业引入了跟踪系统。知情人士透露,中方的追踪系统已于上周生效——要求生产商在线提交包括交易量和客户名称在内的额外信息。光华校区面向“5+2”区域招生600名,其中统招生564名(含指标到校生282名),调剂生36名;面向成都市非“5+2”区域招生 80名,统招生 76名,调剂生 4名。另外项目班计划8名,为面向全市招生的篮球预备队(男)8名。
20250813 🌶 6996电视影片免费人数2024年最新版下载很多人一天做十套卷子,表面风光,实则智商提款。你错在哪?为什么错?错的类型反复出现吗?有没有套路?如果你不去分析,只是不断“试错”,那你永远在原地打转。女的高潮过后第二次需要多久恢复该博主此前表示,尊界 S800 汽车实际大定均价突破 100 万元(该数据为尊界 S800 新车上市一线 72 小时销售快报,仅作参考),珠三角、长三角和福建订单最多,客户反馈展车内饰配置拉满,盲订客户进店基本转化。该车 25~35 岁客户占比 30%、35~50 岁占比 55%、51 岁以上占比 15%。
6996电视影片免费人数2024年最新版下载
📸 王玉枝记者 叶本健 摄
20250813 💃 6996电视影片免费人数2024年最新版下载刘强东坚持认为,在家电行业里面,品牌商创造的社会价值比零售商要高。正因如此,京东在家电领域的净利润则会控制在3%-4%,而中国家电品牌商净利率超过10%。某种程度上,这促进了中国家电行业生态的长远发展,也让家电成为京东具有广泛认可度的核心品类。亚洲l码和欧洲m码的区别美国教育学家杜威曾说过:“教育是社会进步及社会改革的基本方法。”在这个事件中,老师的行为正是为了促进学生的进步,但却因为家长的冲动和不理解,让教育的正常秩序受到了干扰。
6996电视影片免费人数2024年最新版下载
📸 汪旭记者 刘炼 摄
💃 理想汽车董事长兼CEO李想表示:“为了承接理想汽车迈入千亿规模后对组织能力的新需求,支撑智能汽车业务从战略制定到执行落地,我们对企业组织架构进行了相应调整。智能汽车群组成立后,将通过研发、供应、销售、服务的端到端经营与深度协同,更有力地支撑面向用户的价值创造、价值传递与经营闭环,为理想汽车构筑面向下一个阶段的领先优势。马东辉作为理想汽车的联合创始人,带领研发团队完成了从理想ONE、L系列到MEGA全系车型产品的研发和交付,并成功构建了增程电动、高压纯电、智能空间和智能驾驶等多个领先的技术平台,成为今天理想汽车智能汽车战略的坚实地基。”日本mv与欧美mv的区别
扫一扫在手机打开当前页